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Neural Representations of Observed Actions Generalize
across Static and Dynamic Visual Input
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People interact with entities in the environment in distinct and categorizable ways (e.g., kicking is making contact with foot). We can
recognize these action categories across variations in actors, objects, and settings; moreover, we can recognize them from both dynamic
and static visual input. However, the neural systems that support action recognition across these perceptual differences are unclear. Here,
we used multivoxel pattern analysis of fMRI data to identify brain regions that support visual action categorization in a format-
independent way. Human participants were scanned while viewing eight categories of interactions (e.g., pulling) depicted in two visual
formats: (1) visually controlled videos of two interacting actors and (2) visually varied photographs selected from the internet involving
different actors, objects, and settings. Action category was decodable across visual formats in bilateral inferior parietal, bilateral occipi-
totemporal, left premotor, and left middle frontal cortex. In most of these regions, the representational similarity of action categories was
consistent across subjects and visual formats, a property that can contribute to a common understanding of actions among individuals.
These results suggest that the identified brain regions support action category codes that are important for action recognition and action
understanding.
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Introduction
The ability to recognize actions performed by others is crucial for
guiding intelligent behavior. To perceive categories of actions,
one must have representations that distinguish between them
(e.g., biting is different from pushing) yet show invariance to dif-
ferent instantiations of the same action. Although previous work

has described a network of regions involved in coding observed
actions (the “action observation network” or AON; Caspers et al.,
2010; Rizzolatti and Sinigaglia, 2010; Kilner, 2011; Urgesi et al.,
2014), the extent to which these regions abstract across differ-
ences between action exemplars is not well understood.

Previous research has addressed the question of abstraction
(i.e., invariance) in two ways. First, many neuroimaging and neu-
ropsychological studies have explored generalization between
observed and executed actions in an effort to resolve a debate over
motor system involvement in action understanding (Chong et
al., 2008; Dinstein et al., 2008; Kilner et al., 2009; Oosterhof et al.,
2012a, 2012b; Tarhan et al., 2015; Tucciarelli et al., 2015; for
review, see Rizzolatti and Sinigaglia, 2010; Oosterhof et al., 2013;
Caramazza et al., 2014). Second, other studies have examined
invariance to different perceptual instantiations of observed ac-
tions (Kable and Chatterjee, 2006; Oosterhof et al., 2012a; Wat-
son et al., 2014; Tucciarelli et al., 2015). In an especially direct test
of such invariance, Wurm and Lingnau (2015) found that repre-
sentations in several AON regions distinguished between opening
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Significance Statement

Humans tend to interpret the observed actions of others in terms of categories that are invariant to incidental features: whether a
girl pushes a boy or a button and whether we see it in real-time or in a single snapshot, it is still pushing. Here, we investigated the
brain systems that facilitate the visual recognition of these action categories across such differences. Using fMRI, we identified
several areas of parietal, occipitotemporal, and frontal cortex that exhibit action category codes that are similar across viewing of
dynamic videos and still photographs. Our results provide strong evidence for the involvement of these brain regions in recogniz-
ing the way that people interact physically with objects and other people.
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and closing in a manner that generalized across different kine-
matic manipulations and acted-upon objects (i.e., across bottles
and boxes; cf. Wurm et al., 2016). These findings and others
suggest that at least a subset of AON regions support abstract
codes for actions that could conceivably facilitate perceptual
recognition.

However, we posited that an action recognition system should
display two additional kinds of perceptual generalization. First, it
should support representations of action category that are invari-
ant not only to the acted-on object or kinematics, but also to
other incidental perceptual features such as the identities of
entities involved and location. Whether a girl pushes a boy or a
boy pushes a button, and whether it takes place in a classroom or
a playground, it is still pushing. Second, these representations
should be elicited both by dynamic visual sequences, in which the
entire action is observed, and static snapshots, from which the
causal sequence must be inferred (Hafri et al., 2013). Several
studies have found action-specific representations using static

images (Ogawa and Inui, 2011; Watson et al., 2014) but, crucially,
none has demonstrated common representations across dynamic
and static input. Beyond testing these invariances, we also wished
to examine actions performed with a wide variety of effectors
(e.g., foot, mouth), not just hand/arm actions that are commonly
investigated in the literature (see also Kable and Chatterjee, 2006;
Jastorff et al., 2010; Watson et al., 2014).

To these ends, we used multivoxel pattern analysis (MVPA) of
fMRI data to identify regions supporting abstract action repre-
sentations. We scanned subjects while they viewed eight action
categories in two visual formats (Fig. 1): (1) visually controlled
videos of two interacting actors and (2) photographs involving a
variety of actors, objects, and settings. We then attempted to
decode action category by comparing multivoxel patterns across
the formats, which should be possible in regions that support
action category representations not tied to low-level visual fea-
tures correlated with actions. To anticipate, we were able to de-
code action category across visual formats in bilateral inferior

Figure 1. Examples of stimuli. Subjects viewed dynamic videos and still images of eight categories of interactions. For each action category, one still frame for the video format and three
photographs for the image format are shown. In the video format, actor role (Agent/Patient), action direction (left/right), and scene background (four indoor backgrounds) were fully crossed within
each action category. For example, in the brushing still frame depicted here, the blue-shirted actor is the Agent, the action direction is toward the left, and the background is the red wall, whereas
in other brushing videos, this combination of factors was different (e.g., action direction toward the right instead of left). In the still image format, photographs from the internet were chosen to
maximize variation in actors, objects, viewpoint, and scene context within each category. Image format examples shown here are photographs that we have license to publish and closely resemble
the actual stimuli used.
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parietal lobule (IPL), bilateral occipitotemporal cortex (OTC),
left premotor cortex, and left middle frontal gyrus (mFG). We
then conducted further analyses in these regions to probe the
stability of their representations across perceptual features and
subjects. Finally, we tested for action decoding in independently
localized functional OTC regions to determine their involvement
in action representation (Kanwisher, 2010). Together, our results
support the hypothesis that AON regions contain neural popula-
tions that can mediate action recognition regardless of the dyna-
micity of visual input and the perceptual details of the observed
action.

Materials and Methods
Participants
Fifteen healthy adults (8 female; mean age 22.1 � 4.6 years; range 18 –35
years) were recruited from the University of Pennsylvania community.
All participants were healthy, had normal or corrected-to-normal vision,
and provided written informed consent in compliance with procedures
approved by the University of Pennsylvania Institutional Review Board.
All were right-handed, except one who was ambidextrous. All were native
English speakers and one was bilingual. Data from an additional partic-
ipant was discarded before analysis for an inability to complete the entire
experiment.

For selection of video stimuli, a group of 16 additional individuals
(University of Pennsylvania undergraduates) participated in an online
norming survey for psychology course credit. For selection of still image
stimuli, 647 individuals on Amazon’s Mechanical Turk (MTurk) partic-
ipated in a separate online norming survey. All MTurk workers were
located in the United States and had 90 –95% worker approval rate on
previous tasks.

For the eye-tracking control experiment, a group of 16 additional
individuals (University of Pennsylvania undergraduates) participated for
psychology course credit.

Stimuli
To identify neural representations of action categories that were invari-
ant to incidental perceptual features, we scanned subjects while they
viewed eight different categories of interactions: biting, brushing, kicking,
massaging, pulling, shoving, slapping, and tapping.

The action categories were viewed in two formats: visually controlled
video clips created in the laboratory and visually varied photographic
images taken from the internet. The use of videos allowed us to examine
action representations elicited by dynamic stimuli, thus mimicking ac-
tion perception in the natural world. This approach is the standard in
previous literature investigating action recognition (Grossman and
Blake, 2002; Vangeneugden et al., 2014; Wurm and Lingnau, 2015). The
use of images allowed us to determine whether the same action represen-
tations were elicited even when actions are perceived from a static snap-
shot, which has been shown in previous behavioral studies to be
sufficient for recognition even from brief displays (Hafri et al., 2013).

In addition, by using one format that was more visually controlled (the
videos) and another that was more visually varied (the images), we de-
creased the possibility of potential confounding factors present in either
format alone. The videos always contained the same set of actors and
scene contexts, so the different body movement patterns were the only
aspect of the stimuli that allowed categories to be discriminated (apart
from brushing, which contained a unique object). Although this had the
merit that distinctions between categories within the videos could not be
attributed to differences in actors or scene context, it had the disadvan-
tage that category was inevitably confounded with lower-level motion
properties that covaried with the actions. Conversely, in the still images,
distinctions between categories could not be attributed to low-level mo-
tion patterns; however, because the stimuli were less visually constrained,
it remained possible that action category could have covaried with the
presence of particular types of actors, objects, scene contexts, or even
implied motion (Kourtzi and Kanwisher, 2000; Senior et al., 2000). By
comparing patterns of fMRI responses to the videos with those to the still
images when identifying category representations, we reduced these con-

cerns because the most likely confounds in one stimulus set are either
absent or controlled for in the other.

Video stimuli. A total of 128 video clips (2.5 s each) were filmed and
divided equally into eight action categories. A pair of male actors of
similar height performed all interactions. Video clips were filmed in front
of four different indoor backgrounds; one actor appeared as the Agent
(i.e., the entity that performs an action on another entity) and the other
as the Patient (i.e., the entity on which an action is performed) and the
action was directed either toward the left or to the right. These three
factors were crossed to make 16 video clips for each category: four back-
grounds � two actor roles (actor A as Agent or actor B as Agent) � two
action directions (leftward or rightward). For example, for biting, there
were four video clips (with different backgrounds) of actor A on the left
biting actor B on the right, four of A on the right biting B on the left, four
of B on the left biting A on the right, and four of B on the right biting A on
the left.

The two actors were centered in the video frame in full-body profile
view and started each clip at rest with arms at their sides. For half of
the action categories (biting, pulling, shoving, and slapping), the actors
faced one another and, for the other half (brushing, kicking, massag-
ing, and tapping), they both faced the same direction. For brushing,
both actors always held a brush. Actors kept neutral faces throughout
the duration of the videos. Example still frames for each action cate-
gory appear in Figure 1.

To ensure that our videos could be easily interpreted as depicting the
intended action categories, we obtained descriptions of our videos from
a separate group of raters. These participants viewed a random selection
of 100 videos one at a time and provided a verbal label that in their
opinion best described each action depicted (total 15 labels per video clip,
SD � 0.45, range 14 –16). These verbal labels confirmed that our video
clips depicted the intended action categories: all were described with the
intended verbal label or close synonym �95% of the time. Synonyms
included: for biting: chomping, gnawing; for brushing: combing; for kick-
ing: none; for massaging: rubbing; for pulling: yanking, tugging, grabbing,
dragging; for shoving: pushing; for slapping: hitting, smacking; and for
tapping: patting.

Still image stimuli. For each action category, we used 16 still images
(128 total), which were selected to maximize the within-category variety
of actors, objects, and scene contexts (e.g., only one biting image included
a person biting an apple). Stimuli included both animate and inanimate
Patients (the entity on which an action is performed).

To create this stimulus set, an initial set of candidate stimuli were
obtained from Google Images using search terms that included the target
verbal label, close synonyms, and short phrases (e.g., patting or patting on
the back for tapping, combing for brushing, pushing for shoving, and
smacking in the face for slapping). This search procedure yielded 809
images (87–118 images per category). To reduce this set, a group of
MTurkers followed the same norming procedure as for the videos. Each
viewed a random selection of 60 images and provided a verbal label that
best described each action depicted (total 16 labels per image, SD � 1.6,
range 11–20). Based on these labels, we eliminated images that did not
have high name agreement with the target verbal label or close synonym.
Synonyms included: for biting: gnawing, tasting, eating; for brushing:
combing; for kicking: kickboxing; for massaging: rubbing, back-rubbing; for
pulling: yanking, tugging, grabbing, grasping, dragging; for shoving: push-
ing; for slapping: hitting, smacking, punching; and for tapping: patting,
poking, touching. Name agreement was at least 87% for each biting, brush-
ing, kicking, and massaging image. For the other categories ( pulling, shov-
ing, slapping, and tapping), the name agreement criterion was relaxed to
a minimum of 75%, 75%, 64%, and 53%, respectively, to retain at least 16
images per category. This resulted in a set of 209 images (16 –38 per
category) with high name agreement.

We then calculated three measures to assess low-level visual similarity
among the remaining images with the aim of choosing a final image set
with maximal visual dissimilarity within each category. The first measure
was the Gist model (Oliva and Torralba, 2001), which is a set of image
descriptors that represent the energy at different spatial frequencies and
scales. Image similarity was calculated as the correlation of descriptor
magnitudes between each pair of images. The other two measures were
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the average hue, saturation, value (HSV) hue channel values for each
image and the average HSV saturation channel values for each image.
With these three measures in hand, we ran 10,000 permutations in which
we randomly selected a subset of 16 images per category and calculated,
for each category, the average distance in Gist space between all 16 images
and the variance across images in the hue and saturation channels. Of
these permutations, we selected the one with the greatest average within-
category Gist distance and greatest within-category variance across im-
ages for hue and saturation. Across the final set of 128 images, we
luminance matched the HSV value channel using the MATLAB SHINE
toolbox (Willenbockel et al., 2010) and converted the images back to
RGB space. Examples for each action category appear in Figure 1.

MRI acquisition
Scanning was performed at the Center for Functional Imaging at the
University of Pennsylvania on a 3T Siemens Prisma scanner equipped
with a 64-channel head coil. High-resolution T1-weighted images for
anatomical localization were acquired using a 3D magnetization-
prepared rapid acquisition gradient echo pulse sequence [repetition time
(TR), 1620 ms; echo time (TE), 3.09 ms; inversion time, 950 ms; voxel
size, 1 � 1 � 1 mm; matrix size, 192 � 256 � 160 mm]. T2*-weighted
images sensitive to blood oxygenation level-dependent (BOLD) con-
trasts were acquired using a gradient echo echoplanar pulse sequence
(TR, 3000 ms; TE, 30 ms; flip angle, 90°; voxel size, 3 � 3 � 3 mm; field
of view, 192 mm; matrix size, 64 � 64 � 44). Visual stimuli were dis-
played at the rear bore face on an InVivo SensaVue Flat Panel Screen at
1920 � 1080 pixel resolution (diagonal � 80.0 cm, width � height �
69.7 � 39.2 cm). Participants viewed the stimuli through a mirror at-
tached to the head coil. Images subtended a visual angle of �11.7 � 11.7°
and videos subtended a visual angle of �18.9 � 10.7°. Responses were
collected using a fiber-optic button box.

Design and task
Main experiment. To determine BOLD response to action categories in
different visual formats, participants were scanned with fMRI while
viewing the still images and videos. Images and videos were presented
in separate scan runs, with four runs per format (eight total), alter-
nating in sets of two (e.g., image run 1, image run 2, video run 1, video
run 2, image run 3, etc.). The format that appeared first was counterbal-
anced across participants. Within format, stimuli were identical within
odd-numbered and within even-numbered runs (e.g., stimuli in video
runs 1 and 3 were identical, stimuli in image runs 2 and 4 were identical,
etc.). Therefore, except for repetition trials (see next paragraph), each
stimulus was shown a total of two times over the course of the experiment
(in separate runs).

To ensure attention to the stimuli, participants were instructed to
press a button whenever the stimulus on the current trial was exactly the
same as the stimulus on the immediately preceding trial (repetition tri-
als). Importantly, this task could not be performed by attention to the
action category alone. Trials occurred every 3 s in a rapid event-related
design. Videos were displayed for 2500 ms, followed by a 500 ms intertrial
interval (ITI) with a white fixation cross centered on a gray background.
Images were displayed for 1200 ms, followed by an 1800 ms ITI. Each
scan run included 64 trials in which unique stimuli were shown (8 for
each category), 8 repetition trials, and 12 null trials, in which participants
viewed a blank screen with a fixation crosshair for 3 s (total duration 4
min 33 s per scan run). A unique pseudorandomized sequence of stimuli
was generated for each scan run using optseq2 (�http://surfer.nmr.mgh.
harvard.edu/optseq; RRID:SCR_014363� with the following parameters:
psdwin 0 to 21, nkeep 10000, focb 100, nsearch 200000. Five extra null
trials were added at the end of each scan run to ensure that we captured
the hemodynamic response to the last stimulus in each run.

Video stimuli were divided such that odd video runs contained the
videos with two of the four backgrounds and even video runs contained
the videos with the remaining two backgrounds. Therefore, each video
run included two stimuli for each combination of action category, actor
roles, and action direction (eight stimuli per action category in each
video run). The combinations of background splits were cycled through
for each subject (e.g., subject 1 had backgrounds 1 and 2 in odd runs and

backgrounds 3 and 4 in even runs, subject 2 had backgrounds 1 and 3 in
odd runs and backgrounds 2 and 4 in even runs, etc.). Image stimuli were
assigned to odd and even runs with a unique split for each subject (eight
images per category for the odd runs and eight per category for the
even runs). Stimuli were displayed using a Macbook Pro laptop with
MATLAB version 2013b (The MathWorks; RRID:SCR_001622) and the
MATLAB Psychophysics Toolbox version 3.0.11 (Brainard, 1997; Pelli,
1997; RRID:SCR_002881).

Functional localizers. To determine the information content for action
categories in functionally selective brain regions, all subjects completed
three functional localizer scans in the middle of each scan session. The
first localizer featured static image stimuli to identify regions responsive
to different stimulus categories. This run consisted of 25 blocks (15 s long
each; run duration 6 min 15 s) of static images of faces, objects, scrambled
objects, bodies, and scenes. Blocks 1, 7, 13, 19, and 25 were null blocks
with a blank gray screen and white crosshair. Images were presented for
800 ms, each followed by a 200 ms interstimulus interval. Subjects per-
formed a one-back repetition detection task (two repetitions per block).

The second localizer featured dynamic stimuli to identify regions re-
sponsive to biological motion and basic motion (Grossman et al., 2000;
Vaina et al., 2001; Grossman and Blake, 2002). This run consisted of 25
blocks (18 s long each; run duration 7 min 30 s) of intact point-light
displays of single-person actions (e.g., waving, jumping), scrambled ver-
sions of these stimuli (in which motion patterns were preserved but
starting position of points was randomized), and static point-light still
frames randomly selected from the scrambled point-light videos. Blocks
1, 5, 9, 13, 17, 21, and 25 were null blocks with a blank gray screen and
centered red fixation point. Stimuli were presented for 1500 ms each,
with a 300 ms interstimulus interval. Subjects performed a one-back
repetition detection task (one repetition per block). To create these stim-
uli, motion capture data were taken from the Carnegie Mellon Motion
Capture Database �http://mocap.cs.cmu.edu� and animated using the
Biomotion toolbox (van Boxtel and Lu, 2013).

The third localizer featured linguistic stimuli to identify regions re-
sponsive to linguistic depictions of actions (design based on Bedny et al.,
2008). This run consisted of 20 blocks (18 s long each; run duration 6 min
36 s) in which verbs and nouns were presented visually to participants in
separate alternating blocks. On each trial (2.5 s each), participants had to
rate the similarity in meaning of 2 words presented sequentially (1 s each)
by performing a button press indicating their response on a scale of 1 to
4. Words were a set of 50 motion verbs (e.g., to stumble, to prance) and 50
animal nouns (e.g., the gorilla, the falcon) approximately equated for
similarity and difficulty (available in supplementary material in Bedny et
al., 2014). Words were paired randomly within block.

fMRI data analysis
Overview. Our primary goal was to identify representations of action
categories that generalized across dynamic videos and static images. To
identify brain regions supporting such representations, we implemented
a whole-brain searchlight analysis of multivoxel responses to action cat-
egories shown in both video and image format. Once these regions were
identified, we performed several further analyses to determine the
properties of the encoded action categories. First, we compared the
cross-format searchlight results to results from within-format search-
light analyses to observe the degree of overlap of within- and cross-
format decoding. Second, with the regions identified by the cross-format
searchlights, we performed a more fine-grained analysis of the responses
to the video stimuli to test whether category representation elicited by
videos generalized across actor role and direction of action. Third, we
performed a representational similarity analysis within these regions to
determine whether their category spaces were similar across subjects.
Finally, to determine the relationship between functional selectivity and
coding of action category, we tested for cross-format and within-format
category decoding in a number of functional regions of interest (ROIs)
defined based on univariate responses in localizer scans.

Data preprocessing. Functional images were corrected for differences in
slice timing by resampling slices in time to match the first slice of each
volume. Images were then realigned to the first volume of the scan and
subsequent analyses were performed in the subject’s own space. Motion
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correction was performed using MCFLIRT (Jenkinson et al., 2002).
Data from the functional localizer scans were smoothed with a 5 mm
full-width at half-maximum Gaussian filter; data from the main experi-
mental runs were not smoothed.

Whole-brain analysis of cross- and within-format action category decod-
ing. To search for cross-format action category information across the
brain, we implemented a searchlight analysis (Kriegeskorte et al., 2006)
of multivoxel patterns elicited by the eight action categories in video and
static image format. We centered a small spherical ROI (radius 5 mm, 19
voxels) around every voxel of the brain separately for each participant
and then calculated a discrimination index within each sphere. This in-
dex was defined as the difference between the Pearson correlation across
scan runs for patterns corresponding to the same action category in
different formats (e.g., kicking in the video format with kicking in the
image format) and the Pearson correlation across scan runs for patterns
corresponding to different action categories in different formats (e.g.,
kicking in the video format with brushing in the image format). If this
index is positive, then this indicates that the searchlight sphere contains
information about action category (Haxby et al., 2001). We then assigned
the resulting value to the central voxel of the sphere.

To define the activity patterns, we used general linear models (GLMs)
implemented in FSL �http://fsl.fmrib.ox.ac.uk/fsl/fslwiki; RRID:SCR_
002823� to estimate the response of each voxel to each action category in
each scan run. Each runwise GLM included one regressor for each action
category (eight total), one regressor for repetition trials, regressors for six
motion parameters, and nuisance regressors to exclude outlier volumes
discovered using the Artifact Detection Toolbox �http://www.nitrc.org/
projects/artifact_detect; RRID:SCR_005994�. A high-pass filter (100 Hz)
was used to remove low temporal frequencies before fitting the GLM and
the first two volumes of each run (always extra null trials) were discarded
to ensure data quality. Individual patterns for each run were normalized
before cross-run comparison by calculating the z-score for each voxel,
across conditions. Z-scored patterns were averaged within odd and
within even runs of the same format (e.g., image runs 1 and 3 were
averaged; video runs 2 and 4 were averaged) and discrimination index
scores were calculated based on correlations between even and odd sets of
runs.

To produce optimal alignment of searchlight maps across subjects, we
first reconstructed anatomical pial surface and gray-white matter bound-
aries for each subject using FreeSurfer version 5.3.0 �http://surfer.nmr.
mgh.harvard.edu; RRID:SCR_001847�. These were aligned to a Free-
Surfer standard template using a spherical transformation (Fischl et al.,
1999) and, based on this alignment, the mri_vol2vol tool was used to
calculate registrations from subject functional space to FreeSurfer
standard. These standard-space subject maps were submitted to a
second-level random-effects analysis in FSL. To correct for multiple
comparisons, the group-level t-map was first submitted to threshold-free
cluster enhancement (TFCE; Smith and Nichols, 2009), an algorithm
designed to offer the sensitivity benefits of cluster-based thresholding
without the need for an arbitrarily chosen threshold. The TFCE statistic
represents the cluster-like local support for each voxel using empirically
and theoretically derived height and extent parameters. This TFCE map
was then whole-brain corrected ( p 	 0.05) for the familywise error rate
using standard permutation tests implemented in FSL with the random-
ize function (10,000 permutations) and spatial 5 mm FWHM variance
smoothing, which is recommended for df 	 20 because it reduces noise
from poorly estimated SDs in the permutation test procedure (Nichols
and Holmes, 2002).

Searchlight analyses were also conducted within visual format (one for
Image Format, one for Video Format). The same analyses as above were
implemented, except for the following. For Image Format, patterns were
compared between image runs only (e.g., kicking in the odd image runs
with kicking in the even video runs); for Video Format, between video
runs only (e.g., kicking in the odd video runs with kicking in the even
image runs). To compare the overlap of within- and cross-format decod-
ing regions qualitatively, we overlaid whole-brain searchlight maps for
the different format comparisons to examine regions of conjunction.
Here, the maximum p-value (TFCE, whole-brain corrected) is the valid

value for conjunction inference in each voxel (the minimum statistic
compared with the conjunction null; Nichols et al., 2005).

Cross-format ROI definition. We used the results of the cross-format
searchlight analysis to define ROIs for two subsequent analyses, de-
scribed below. ROIs were constructed by taking the intersection of the
cross-format decoding map (whole-brain corrected) and spheres cen-
tered on the cluster peaks from this map (Fairhall and Caramazza, 2013)
and transforming the defined region back into the native functional
space for each subject. Because spheres with a given radius may yield
different ROI sizes after intersection with the whole-brain map, the ra-
dius of these spheres was adjusted separately for each region so that �100
voxels were contained within each ROI after transformation to subject
space (mean 108 voxels, SD � 15, range 81–156).

Invariance to controlled factors in the video stimuli. The first follow-up
analysis tested whether the patterns elicited by the videos showed invari-
ance to incidental properties of the actions, such as the action direction
(leftward vs rightward) and actor roles (actor A as Agent or actor B as
Agent). To test whether this was the case, we implemented additional
GLMs that included one regressor for each action category � action
direction � actor role combination within each video run (32 regressors
total per run, with two video stimuli contributing to each estimate).
Multivoxel patterns within run were z-scored across the 32 conditions
and averaged within odd and within even runs. For each cross-format
ROI, pairwise Pearson correlations were calculated for patterns between
all 32 conditions across odd and even runs and correlation coefficients
were averaged for all combinations of same versus different action cate-
gory, same versus different action direction, and same versus different
actor roles, yielding eight mean correlations values per subject and ROI.
These pattern similarity values were then entered into 2 � 2 � 2
repeated-measures ANOVAs (one for each ROI), with action category,
action direction, and actor roles as factors. Early visual cortex (EVC,
defined in a separate functional localizer described below) was also in-
cluded in this analysis for comparison with the cross-format ROIs.
P-values for F statistics were corrected for multiple comparisons across
the nine ROIs using the Bonferroni–Holm method separately for each set
of F statistics yielded by the ANOVA. The Bonferroni–Holm method is
uniformly more powerful than standard Bonferroni while still control-
ling for the familywise error rate (Holm, 1979). Note that, although the
same Video Format data were used for cross-format ROI definition and
for this follow-up analysis, this analysis is unlikely to be affected by cir-
cular analysis problems (Kriegeskorte et al., 2009) because the cross-
format ROI definition procedure used GLMs that collapsed across actor
role and action direction for each action category. Therefore, the Video
patterns used in the cross-format ROI definition procedure did not con-
tain information about actor role or action direction.

Representational similarity analysis. The second follow-up analysis
tested whether the patterns that allow for action discrimination within
individual reflect a common representational space across individuals;
that is, whether actions are represented in a similar way from person to
person. To examine this issue, we used representational similarity anal-
ysis (RSA; Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013).
Within each cross-format ROI, representational dissimilarity matrices
(RDMs) were constructed using the pairwise Pearson correlation dis-
tances (1 
 r) between multivoxel patterns for each action category to
every other. Three separate RDMs were constructed for every subject and
ROI: a video format RDM (even to odd video run correlations), an image
format RDM (even to odd image run correlations), and a cross-format
RDM (all video to all image run correlations). Cross-subject consistency
in representational space was then assesses by calculating the Spearman
correlation between each subject’s RDM and every other subject’s RDM
separately for video, image, and cross-format RDMs. Because we were
interested in similarities and differences between categories, rather than
reliability within categories, only off-diagonal elements of the RDMs
were included in the calculation. These intersubject correlations repre-
sent the similarity in representational space from each subject to every
other, abstracted away from the underlying units of representation
(voxels). If the mean intersubject correlation is significantly above
zero, it indicates that the relationship among representational spaces
is reliable.
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Because the intersubject RDM correlation values were not indepen-
dent (i.e., RDMs from each subject were used more than once in the
intersubject RDM comparisons, e.g., subject 1 to subject 2, subject 1 to
subject 3, etc.), permutation tests were used to determine chance levels.
In these tests, for each comparison type (video, image, cross), the condi-
tion labels of the subject RDMs were shuffled before calculating the
intersubject correlations. The mean intersubject correlation was calcu-
lated across all pairwise subject comparisons 10,000 times for each
comparison type and cross-format ROI. The p-value was simply the pro-
portion of times the true mean intersubject correlation was lower than a
permuted intersubject correlation. These p-values were then corrected
for multiple comparisons across the eight ROIs using the Bonferroni–
Holm method separately for each comparison type. The mean chance
intersubject correlation from permutation testing was approximately
zero in all cases (mean 7.77 � 10 
5, range 
1.50 � 10 
3 to 1.50 � 10 
3,
across all ROIs and comparison types).

Note that although the same data were used for cross-format ROI
definition and for this follow-up analysis, the results of these analyses do
not follow trivially from the finding of cross-format action category rep-
resentations in these regions. In particular, because the action category
discrimination index was quantified separately for each subject (using
each subject’s own representational space), reliable action category de-
coding across subjects does not logically ensure that their representa-
tional spaces will be related to one another. To confirm this point, we ran
a simulation using randomly constructed RDMs. We observed no corre-
lation between the magnitude of the discrimination indices and the
Spearman correlation of the off-diagonal values across RDMs (mean

6.48 � 10 
4, SD � 0.03, across 1000 simulations).

Functionally localized ROIs. We also examined action decoding in sev-
eral functional ROIs that previous work suggested might play a role in
processing actions or perceptual constituents of actions. These ROIs
were defined based on fMRI responses during three functional localizer
scans (described above).

Data from the first localizer scan were used to define ROIs related to
the viewing of specific stimulus categories, using a group-constrained
subject-specific (GSS) ROI definition method (Julian et al., 2012). This
approach yields similar individual subject functional ROIs to the tradi-
tional hand-drawn ROI pipeline, but uses an objective and automatic
method. Each ROI was initially defined in each subject as the top 100
voxels in each hemisphere that responded more to the contrast of interest
and fell within the group-parcel mask for the given ROI. Parcel masks
were derived from a large number of separate subjects undergoing simi-
lar localizers using this method �parcels are available at http://web.mit.
edu/bcs/nklab/GSS.shtml�. Using this method, we identified the follow-
ing ROIs, each using the contrast listed in parentheses: EVC (scrambled
objects � objects); lateral occipital (LO) and posterior fusiform (pFs;
objects � scrambled objects); occipital face area (OFA), anterior fusi-
form face area (FFA), and right posterior FFA (faces � objects); extra-
striate body area (EBA) and right fusiform body area (FBA; bodies �
objects); and occipital place area (OPA), parahippocampal place area
(PPA), and retrosplenial complex (RSC; scenes � objects).

Data from the second localizer scan (dynamic stimuli) were used to
define two motion-sensitive functional ROIs. GSS parcels were not avail-
able for these stimulus contrasts, so these ROIs were hand drawn. Hu-
man middle temporal complex (hMT�) was defined as the set of
contiguous voxels responding more to scrambled than static point-light
displays in the vicinity of the posterior inferior temporal sulcus separately
in both hemispheres. Thresholds were determined separately for each
subject to be consistent with ROIs found in previous studies (mean t �
5.3, range 3– 8). The biological-motion-selective posterior superior tem-
poral sulcus (pSTS-bio) was defined as the set of contiguous voxels re-
sponding more to intact than scrambled point-light displays in the
vicinity of the posterior superior temporal sulcus in the right hemisphere.
Thresholds were determined separately for each subject to be consistent
with ROIs found in previous studies (mean t � 2.9, range 2.0 – 4.7, iden-
tified in 11 of 15 participants).

Data from the third localizer scan (linguistic stimuli) were used to
define the verb-selective left posterior middle temporal gyrus (pMTG-
verb), defined as the set of contiguous voxels responding more to verbs

than nouns in the vicinity of the left posterior middle temporal gyrus.
Thresholds were determined separately for each subject to be consistent
with ROIs found in previous studies (mean t � 3.7, range 2.4 – 4.5, iden-
tified in 11 of 15 participants).

Because these functional ROIs often partially overlapped in individual
subjects, we excluded voxels falling into more than one ROI (cf. Schwar-
zlose et al., 2008; Weiner and Grill-Spector, 2013). This allowed us to
isolate the specific contribution of voxels with certain functional profiles
(e.g., body-selective or motion-selective), without contamination from
nearby regions with different functional profiles. After these exclusions,
the mean size of the ROIs was as follows: EVC: 186 voxels (SD � 15, range
150 –200); hMT�: 146 voxels (SD � 30, range 98 –220); pSTS-bio: 51
voxels (SD � 22, range 16 –93); LO: 155 voxels (SD � 15, range 134 –
172); pFs: 142 voxels (SD � 21, range 86 –163); anterior FFA: 150 voxels
(SD � 17, range 122–178); right posterior FFA: 200 voxels (no overlap);
OFA: 165 voxels (SD � 23, range 114 –193); EBA: 116 voxels (SD � 24,
range 87–160); right FBA: 65 voxels (SD � 13, range 43–92); OPA: 195
voxels (SD � 3, range 190 –200); PPA: 181 voxels (SD � 14, range 147–
197); RSC: 200 voxels (no overlap); and pMTG-verb: 94 voxels (SD � 60,
range 35–211). Analyses using ROIs in which overlapping voxels were
not excluded yielded qualitatively similar results.

Action category discrimination indices for the video, image, and cross-
format comparisons were calculated separately within each ROI for each
subject and submitted to two-tailed one-sample t tests against chance
(zero). P-values were corrected for multiple comparisons across func-
tional ROIs separately within comparison type using the Bonferroni–
Holm method (14 tests for each comparison type).

Eye-tracking control task
To ensure that action category decoding could not be attributed to dif-
ferences in spatial attentional allocation, we ran a control study in which
a separate group of participants underwent the identical procedure as in
the main fMRI experiment, but outside of the scanner and while their
gaze location was recorded by a remote binocular eye tracker situated
within the visual display monitor (Tobii T120 eye tracker sampling at
60 Hz).

2D gaze maps were created for each combination of subject, format
(Image or Video), run (four per format), and action category (eight) by
binning gaze locations on the screen into 70 horizontal � 56 vertical bins.
In other words, gaze maps akin to a 2D histogram were formed by divid-
ing the screen extent into 70 � 56 bins and each eye-tracking sample was
placed into its corresponding location in this set of bins (ignoring the
time dimension). As with the fMRI voxel patterns, these gaze maps were
z-scored across action category (for each subject, format, and run) and
even and odd run maps were averaged together. We then attempted to
decode action category both within- and across-format using the 2D gaze
maps. Pearson correlations were calculated between even- and odd-run
gaze maps corresponding to each action category (for each subject and
analysis type separately). The discrimination index was the average
within-category correlation minus the average between-category corre-
lation. We tested the significance of this discrimination index across
subjects separately for Image Format, Video Format, and Cross Format.

Results
Behavioral performance
One participant reported that she misunderstood the instruc-
tions for her first video run, so data for this run (behavioral and
imaging) were excluded. For the remaining data, behavioral per-
formance on the one-back repetition detection task was good,
indicating that participants were playing close attention to the
stimuli. For image runs, the mean accuracy on repetition trials
was 0.91 (SD � 0.08), the mean false alarm rate was 0.002 (SD �
0.002), and the average reaction time (RT) on correct trials was
694 ms (SD � 82 ms). For video runs, the mean accuracy was 0.89
(SD � 0.10), the mean false alarm rate was 0.014 (SD � 0.015),
and the average RT on correct trials was 1117 ms (SD � 157 ms).
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Cross-format action category decoding across the brain
Our primary goal was to identify representations of action cate-
gories that were invariant to incidental visual elements, such as
actors, objects, scene context, and the presence or absence of
dynamic motion information. To this end, we scanned partici-
pants while they viewed videos and still images of eight categories
of interactions. We then used a searchlight analysis to identify
brain regions where action category representations could be de-
coded across the video and image formats. This analysis revealed
seven contiguous clusters in the cross-format searchlight volume,
which were located in left and right IPL, left and right lateral OTC
(LOTC), left and right ventral OTC (VOTC), and left mFG (for a
list of these clusters, see Fig. 2A and Table 1). These regions
largely overlap with the previously identified AON (Caspers et al.,
2010; Rizzolatti and Sinigaglia, 2010; Kilner, 2011; Urgesi et al.,
2014). These results suggest that AON regions encode categories
of actions in a consistent way across highly varied perceptual
input. For subsequent analyses, ROIs corresponding to these
clusters (�100 voxels each) were defined individually in each
subject. (For discussion of the relationship of the cross-format
OTC regions to functionally defined OTC regions based on pre-
vious literature, see below, “Cross-format decoding in function-
ally selective regions.”)

The largest cluster, left IPL, had several local maxima (Table
1). The cluster peak was in left ventral IPL in the supramarginal
gyrus (x, y, zmni � 
58, 
37, 28) and this was used as the left IPL
ROI for further analyses. An additional local maximum was lo-
cated in left premotor cortex (x, y, zmni � 
55, 
4, 40; Fig. 2A).
Though this area was contiguous with the left IPL cluster in the
volume, it is anatomically separated by several sulci and gyri from
the other local maxima, and prior literature suggests a possible
functionally distinct role for left premotor cortex in recognition
of actions (Rizzolatti and Sinigaglia, 2010; Kilner, 2011; Cara-
mazza et al., 2014; Wurm and Lingnau, 2015). Therefore, we
defined an additional ROI around this local maximum for fur-
ther interrogation. With this additional ROI, we had eight ROIs
for subsequent analyses: left and right IPL, left and right LOTC,
left and right VOTC, left premotor, and left mFG.

Prior work has shown coding of specific limb and effector
information in some of the regions reported here (IPL and
LOTC; Mahon et al., 2007; Peeters et al., 2009, 2013, Orlov et al.,
2010, 2014, Gallivan et al., 2011, 2013a; Bracci and Peelen, 2013).
To ensure that the present cross-decoding results were not driven
solely by an effector-based distinction between action categories,
we examined cross-format decoding separately for two sets of our

action categories: those that involved hand/arm effectors (mas-
saging, pulling, shoving, slapping, and tapping) versus those that
involved other, more varied, effectors (biting, brushing, and kick-
ing). If an effector-based distinction between hand/arm and non-
hand/arm actions were driving our results, then we should
observe cross-format decoding only within the varied effector set
and not the hand/arm effector set. However, despite the reduced
data available in each subset, we still observed cross-decoding in
half or more of the cross-format ROIs in both subsets: Six of eight
ROIs showed significant decoding within the varied effector set
(left mFG, left VOTC, left and right LOTC, left and right IPL; t
values �2.75, pcorrected values 	0.046) and 4 of 8 showed signif-
icant decoding within the hand/arm effector set (right VOTC,
right LOTC, left and right IPL; t values �3.02, pcorrected values
	0.046). This suggests that, in these regions at least, cross-format
decoding is unlikely to be driven solely by a coarse distinction
between actions performed with the hand/arm versus other
effectors.

Within-format action category decoding across the brain
To determine whether action category information tied to the
particular visual format was present in other brain regions, we
conducted whole-brain searchlights for action category decoding
separately for the video format and image format. Within the
video format, we found widespread action category decoding
across the brain in both hemispheres (Fig. 2B). These results are
not surprising given the consistency in visual motion energy
across the video clips within action category (see above, Materials
and Methods: “Video stimuli” section). In contrast, action cate-
gory decoding within the image format was restricted largely to
the regions identified in cross-format decoding (cf. Fig. 2A,C)
with an additional left orbitofrontal cluster. This was confirmed
in a conjunction overlap map of the three searchlight maps (Fig.
2D; Nichols et al., 2005): The within-format searchlights over-
lapped one another in or adjacent to areas observed in the cross-
format searchlight. Interestingly, the degree of overlap of the
maps in the different regions suggests a possible difference in the
degree of format dependence of action coding between left IPL
and the other regions. In the former, there is a large area of
cross-decoding and the within-format territory (both image and
video) overlaps with this. In the other regions, particularly the left
LOTC, there is only a small area of cross-decoding, but large (and
overlapping) areas of within-format decoding. This might sug-
gest that action representations are less format-dependent in the
left IPL than in other regions.

Table 1. MNI locations, extent, mean cross-format discrimination index, significance, and peak statistics for the clusters identified in the cross-format action category
searchlight, ordered by cluster extent (number of voxels)

Cluster Peak

Region Extent
Cross-format
discrimination index x, y, z (center of gravity) p(FWE-cor) Pseudo-t p(unc) x, y, z

Left IPL (ventral)a 605 0.045 
49.2 
26.7 38.7 0.002 5.07 1E-04 
58 
37 28
Left premotor (ventral)b 0.003 3.85 9E-04 
55 
4 40
Left IPL (dorsal) 0.02 5.73 3E-04 
40 
43 49
Left postcentral 0.003 5.03 3E-04 
58 
22 37
Left premotor (dorsal) 0.031 3.56 5E-04 
31 
4 43

Right LOTCa 96 0.049 48.9 
61.5 6.1 0.004 6.11 2E-04 44 
61 4
Right IPLa 64 0.045 56.3 
27.9 37.3 0.016 4.91 3E-04 53 
28 37
Left LOTCa 28 0.050 
42.9 
80.6 
0.1 0.026 4.54 1E-03 
43 
82 
2
Left VOTCa 25 0.043 
32.8 
44.8 
12.6 0.019 5.09 5E-04 
28 
40 
11
Right VOTCa 17 0.053 44.4 
52.0 
12.9 0.029 4.88 9E-04 44 
52 
11
Left mFGa 11 0.033 
45.5 20.8 30.2 0.036 3.85 2E-04 
46 23 28

Indented are MNI locations and statistics for peaks of additional local maxima within these clusters that were separated by at least 15 mm in the volume. The ROIs used in subsequent analyses were composed of �100 voxels centered on
the cross-format cluster peaks (a), with the addition of the local maximum for left premotor (ventral only; b). FWE, Familywise error rate; cor, corrected; unc, uncorrected.
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Figure 2. A, Whole-brain searchlight for cross-format action category decoding. Black arrows and text indicate the anatomical locations of the cross-format clusters identified in this analysis, as well as the
location of the ROI for left premotor cortex. Data were corrected for multiple comparisons at p 	 0.05 using TFCE and permutation testing. For subsequent analyses, ROIs corresponding to these clusters were
defined individually in each subject. B, Whole-brain searchlight for Image Format action category decoding (corrected as in A). C, Whole-brain searchlight for Video Format action category decoding (corrected
as in A). D,Conjunctionoverlapmapofthesearchlightanalyses,withcolors indicatingwhichofthethreesearchlightmapsoverlapineacharea(blackoutlineindicatesoverlapofall three).VideoFormat decoding
was widespread across the brain, whereas Image Format decoding was mostly restricted to similar regions as were found in the Cross-Format searchlight.
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Can the cross-format results be driven by similarities in
spatial location of attention?
The cross-format results might have been trivially obtained if
participants attended to similar spatial locations for each action
category, even across the two visual formats (image and video).
For example, it is reasonable to hypothesize that, for kicking,
participants might have attended to the lower portion of the vi-
sual display, whereas for slapping, they attended to the higher
portion. Such consistency in location of spatial attention has been
shown to drive multivoxel responses in visual regions, including
hMT� (O’Connor et al., 2002; Bressler and Silver, 2010). To rule
out this possibility, we conducted a control study in which a
separate group of 16 participants performed the same task as the
fMRI participants while their gaze was tracked with a remote eye
tracker. These gaze data were analyzed similarly to how the fMRI
data were analyzed; that is, multivariate patterns (here, 2D maps
of gaze location) were constructed for each subject, format, and
run, and discrimination indices were calculated from the corre-
lation of the 2D gaze maps across action categories for each sub-
ject and format. If participants looked to consistent spatial
locations for each action category, then these gaze map discrim-
ination indices would be reliably above zero.

Action category could indeed be decoded based on gaze loca-
tion for both the Image Format (t(15) � 2.60, p � 0.02) and the
Video format (t(15) � 7.91, p 	 0.001). However, across the visual
formats, discrimination indices based on gaze locations were re-
liably below zero (t(15) � 
4.26, p 	 0.001). These results indi-
cate that gaze locations for action categories were consistent
within format, but were systematically different across formats
(e.g., looking at the top half of the screen for kicking in the Image
Format, but the lower half for kicking in the Video Format).
Therefore, absolute location of spatial attention is unlikely to
explain the cross-format decoding results from fMRI data in the
main experiment.

Invariance to systematically manipulated properties of the
video stimuli
Abstract action category representations should show generaliza-
tion, not only across formats, but also across variations in inci-
dental properties within format such as actors or viewpoint/
action direction. Some evidence that this may be the case comes
from the fact that we were able to decode action category using
only patterns elicited by the images even though the image stim-
uli were chosen to maximize within-category visual dissimilarity.

Figure 3. Analyses for action category specificity and generalization for the Video Format stimuli in cross-format ROIs. EVC, defined by a functional localizer as scrambled objects � intact objects,
was also included for comparison with cross-format ROIs. A, Decoding for action category, action direction, and actor roles. Discrimination index values shown here are average same minus average
different correlation values for action category, action direction, and actor roles, respectively, collapsed over the other factors. Action direction could be decoded in left and right LOTC and EVC,
whereas the actor role code could not be decoded in any regions. Action category could be decoded in most regions, though we note that this is necessitated by our ROI selection procedure, which
was based on cross-format action category decoding using the same data. B, Action category discrimination indices for the cross-format ROIs for each combination of action direction (same or
different) and actor roles (same or different); that is, the orange Action Category bars in A split by the other factors. Only significant differences between action category decoding are indicated. Action
category representations were largely invariant to the systematically manipulated properties of the video stimuli in cross-format ROIs, whereas in EVC, action category decoding was significantly
better when action direction was the same versus different. †p 	 0.055, uncorrected; *p 	 0.05; *p 	 0.05, **p 	 0.01, ***p 	 0.001, corrected for multiple comparisons across the nine ROIs.
Error bars indicate SEM.
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However, to formally test for generalization across incidental
properties, we leveraged the fact that actor roles and action direc-
tion were systematically manipulated in the video clips. We ex-
tracted activity patterns within each ROI for each specific
condition (i.e., each action category � action direction � actor
role combination, 32 patterns in total). The correlation values
between these conditions were then calculated and entered into
repeated-measures ANOVAs (one for each ROI), with action cat-
egory (same vs different), action direction (same vs different),
and actor roles (same vs different) as factors. We also included
EVC in the analysis (defined in a separate functional localizer as
responses to scrambled objects � intact objects) as an indicator
of whether it was possible to detect differences in action decoding
across incidental low-level visual properties in our data.

Finding action category decoding was expected in this analysis
because the ROIs were selected based on the presence of consis-
tent action category patterns across format, which entails that the
patterns within the Video Format should also be consistent.
Somewhat surprisingly, action category decoding was robust in
some, but not all, regions (Fig. 3A). This might be attributable to
more variability in the estimates of activity patterns (there were
two trials per � estimate in the GLM used here, as opposed to
eight trials per � estimate in the previous analysis). Nevertheless,
the estimates were consistent enough that seven of the eight
cross-format ROIs, plus EVC, showed either a main effect of
action category or a trend in this direction. These effects were
marginal in left mFG, left premotor, and right VOTC (F(1,14)

values of 4.66, 5.91, and 5.63, pcorrected values � 0.12, puncorrected

values 	0.05), and significant in all other regions (F(1,14) values
�21.9, pcorrected values 	0.002, puncorrected values 	0.001) except
left VOTC (F(1,14) � 0.75, pcorrected � 0.40, puncorrected � 0.40).
For action direction, a subset of regions showed main effects
(EVC and left LOTC significant, right LOTC marginal), with
greater pattern similarity for the same action direction
than different action direction (EVC: F(1,14) � 17.3, pcorrected �
0.009, puncorrected � 0.001; left LOTC: F(1,14) � 10.3, pcorrected �
0.05, puncorrected � 0.006; right LOTC: F(1,14) � 4.40,
pcorrected � 0.38, puncorrected � 0.055; all other F(1,14) values 	3.03,
pcorrected values �0.62, puncorrected values �0.10; Fig. 3A). This
suggests that these regions are sensitive to the direction of motion
in the videos, which is not surprising given the presence of
motion-selective regions (hMT�) in LOTC and the EVC’s role in
coding low-level visual features. No ROI showed a main effect of
actor roles (all F(1,14) values 	2.53, pcorrected values �0.99,
puncorrected values �0.13; Fig. 3A), indicating that no region dis-
tinguished videos with Actor A as the agent from videos with
Actor B as the agent.

Crucially, in terms of action category invariance, no cross-
format ROI showed an interaction of action category with actor
role and/or action direction; if anything, in left premotor cortex,
action decoding was marginally better for different action direc-
tion versus same (F(1,14) � 4.07, pcorrected � 0.51, puncorrected �
0.06; all other cross-format ROI F(1,14) values 	2.91, pcorrected

values �0.99, puncorrected values �0.11; Fig. 3B). Although the
lack of significant interactions is a null result and should be in-
terpreted with caution, it is worthwhile to note that this modula-
tion was detectable in our data: in EVC, action categories could be
better decoded when action directions were the same than when
they were different (action category � action direction interac-
tion: F(1,14) � 12.4, pcorrected � 0.03, puncorrected � 0.003; Fig. 3B).
Therefore, in regions showing cross-decoding of action category
across videos and images, the ability to distinguish action catego-
ries was no greater when comparing across patterns elicited by

videos in which actor role or action direction were the same than
when comparing across videos in which actor role or action di-
rection were different. Although we cannot rule out definitively
the possibility that action representations in these cross-format
regions are modulated by visual properties of the video stimuli,
this finding is at least consistent with abstract action category
codes.

Representational similarity analysis
Although recognizing actions as distinct from one another is a
crucial first step toward action understanding, reasoning and
communicating about actions requires more graded appreciation
of similarities and differences between action categories. For ex-
ample, two people may readily distinguish slapping from shoving,
corresponding to successful action recognition for each individ-
ual. But if two people’s representational spaces further indicate
that slapping is very similar to shoving, mutual understanding and
communication about these actions will be facilitated. To deter-
mine the extent to which representational spaces for action cate-
gories were consistent across individuals, we calculated the
Spearman correlation between off-diagonal values of RDMs for
each subject to every other subject separately for each cross-
format ROI and comparison type (image format, video format,
and cross-format). The mean intersubject correlation is the aver-
age consistency in representational spaces across individuals,
where chance is zero.

For the image format comparisons, no ROI showed signifi-
cant consistency in representational space across subjects
(pcorrected range 0.07– 0.49), although four of the eight showed
consistency uncorrected for multiple comparisons (left and right
VOTC, right LOTC, and right IPL, puncorrected 	 0.05; other
puncorrected values �0.10). In contrast, for the video format, six of
eight ROIs showed consistency across subjects (left premotor,
right VOTC, left and right LOTC, and left and right IPL, pcorrected

values 	0.05, puncorrected values 	0.005; other pcorrected values
�0.18, puncorrected values �0.09). Similar findings to the video
format were obtained for cross-format consistency: the same 6
ROIs showed consistency across subjects (pcorrected values 	0.03,
puncorrected values 	0.009; other pcorrected values �0.82, puncorrected

values �0.41). (Intersubject correlation values are depicted in
Fig. 4A; see Fig. 4B for a visualization of the clustering of action
categories across regions.)

It is at first glance puzzling that the cross-format consistency
was reliable in most regions despite the lower image format con-
sistency. One account of these contrasting results appeals to the
difference in reliability of the “action category signal” between
the image and video formats, which should be greater for the
video format (as indicated by the higher norming label agreement
in this format). For cross-format consistency, the robust video
format action category signal may “pull out” the weaker image
format signal even when the comparison is made across subjects.
The plausibility of this account was confirmed by simulations.
We generated sets of action category signals with different levels
of signal-to-noise (SNR) and compared the resulting intersubject
consistencies. Specifically, we generated one “true” activity pat-
tern for each of eight action categories made up of 100 voxel
responses randomly drawn from a Gaussian distribution N(0,1).
Varying degrees of noise were added to these “true” underlying
action category patterns, separately for eight runs (four for each
visual format) for each of 15 simulated subjects. This noise was
varied systematically for each format by choosing SDs from the
set (0.01, 0.10, 0.50, 1, 3) separately for the video and image
formats (i.e., the video format SD might be 0.10, whereas the

Hafri et al. • Coding of Observed Actions in the Human Brain J. Neurosci., March 15, 2017 • 37(11):3056 –3071 • 3065



image format SD might be 3). The same RSA as described above
was then conducted using these simulated activity patterns.
These simulations revealed that comparisons of RDMs built from
two sets of low-SNR action category patterns (equivalent to the
image-format comparison in this account) show a much less con-
sistent relationship than comparisons of RDMs built from one
high-SNR and one low-SNR set of action category patterns (the
cross-format comparison in this account). Together, these anal-
yses suggest that most of the regions that we have identified con-
tain a representational space that generalizes from person to
person, even when this space is built from two different visual
formats.

Action category decoding in functionally selective regions
Although we focus above on regions identified in a hypothesis-
free searchlight analysis, there are several well studied functional
regions (fROIs) in or near to OTC that one might postulate a
priori should have a role in action perception. These include
motion-selective hMT�, body-selective EBA and FBA, object-
selective LO and pFs, and pSTS-bio (Tootell et al., 1995; Kourtzi
and Kanwisher, 2001; Grossman and Blake, 2002; Peelen et al.,
2006; Kanwisher, 2010; Grill-Spector and Weiner, 2014). In ad-
dition, a region in LOTC just anterior to hMT�, the left pMTG,
has been found to respond to linguistic descriptions of actions
(Bedny et al., 2008, 2012, 2014; Peelen et al., 2012) and to respond
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in action tasks involving both words and static images (Watson et
al., 2013). To test the possibility that some of these regions might
support abstract action representations, we performed the cross-
format decoding analysis in these fROIs (see also Gallivan et al.,
2013b; Gallivan and Culham, 2015). As a control, we also exam-
ined other fROIs that we did not expect to be involved in abstract
action category representations (face- and scene-selective regions
and early visual cortex; Kanwisher et al., 1997; Epstein and Kan-
wisher, 1998; Kanwisher, 2010).

The only fROIs tested in which significant cross-format de-
coding was found were EBA, LO, and hMT� (t(14) values �5.20,
pcorrected values 	0.002, puncorrected values 	0.001; Fig. 5A,B). We
did not find evidence for reliable cross-format decoding in other
regions, although FBA, pFs, and PPA showed cross-format de-
coding at an uncorrected level (t values of 2.98, 2.78, and 3.02,
respectively, pcorrected values 	0.13, puncorrected values 	0.02; all
other t values 	2.13, pcorrected values �0.41, puncorrected values
�0.052). Notably, we did not find clear evidence for cross-format
action category decoding in two regions known to code for
action-relevant stimuli: right pSTS-bio (t(10) � 1.92, pcorrected �
0.59, puncorrected � 0.08) and left pMTG-verb (t(10) � 1.66,
pcorrected � 0.59, puncorrected � 0.13). Together, these results sug-
gest that the EBA, LO, and hMT� are not only involved in rep-
resenting bodies, objects, and motion, but also contribute to
analysis of visual action scenes at an abstract level. (For a quali-
tative sense of the spatial relationship of fROIs and cross-format
searchlight decoding, see Fig. 5C.)

In addition to the cross-format results in EBA, hMT�, and
LO, several fROIs were sensitive to the action category informa-
tion depicted within only the video format or image format (Fig.
5A,B). However, the fact that these fROIs did not demonstrate
cross-format decoding suggests that their role in representing
actions at an abstract level is limited. Furthermore, the absence of
within-image format decoding in early visual cortex suggests that
we adequately varied low-level image properties within action
category.

Discussion
The goal of this study was to identify brain regions that mediate
visual recognition of actions. We posited that these regions
should display three key properties. First, they should support
representations that discriminate between action categories, but
are at least partially invariant to incidental features such as actor
role, scene background, or viewpoint. Second, these action rep-
resentations should be elicitable by both dynamic and static per-
ceptual input. Third, these regions should not only discriminate
hand-object interactions, but also whole-body interactions with
different effectors. By using cross-format decoding methods, we
identified several regions with these properties: bilateral OTC
(lateral and ventral), bilateral IPL, left premotor cortex, and left
mFG. The subset of these regions previously identified as the
AON (LOTC, IPL, and left premotor; Caspers et al., 2010; Rizzo-
latti and Sinigaglia, 2010; Kilner, 2011; Urgesi et al., 2014) also
exhibited consistency in representational space across subjects, a
property that can facilitate a common understanding of actions
among individuals.

Our findings add to the growing evidence that LOTC is in-
volved in the coding of action categories (Oosterhof et al., 2010,
2012a, 2012b; Gallivan et al., 2013b; Watson et al., 2013; Gallivan
and Culham, 2015; Tarhan et al., 2015; Tucciarelli et al., 2015;
Wurm and Lingnau, 2015; Wurm et al., 2016; for review, see
Lingnau and Downing, 2015). In particular, our analyses of func-
tional ROIs indicated that areas in LOTC selective for bodies,

objects, and motion are also involved in visual action recognition
from varied perceptual input: cross-format action category de-
coding was observed in EBA, LO, and hMT� (see above, “Action
category decoding in functionally selective regions” section;
Downing et al., 2001; Kourtzi and Kanwisher, 2001; Peelen et al.,
2006; Ferri et al., 2013; Weiner and Grill-Spector, 2013; for re-
view, see Lingnau and Downing, 2015). In contrast, we failed to
observe cross-format decoding in several functionally defined
regions known to be responsive to action-relevant stimuli: left
pMTG-verb (Bedny et al., 2008, 2012, 2014; Peelen et al., 2012;
Watson et al., 2013) and pSTS-bio (Vaina et al., 2001; Grossman
and Blake, 2002; Peuskens et al., 2005; Gao et al., 2012; Deen et al.,
2015). Although this latter set of null results should be inter-
preted with caution, it suggests that these regions might be
involved in processing the lexical semantics of actions (pMTG-
verb) or the motion of animate entities (pSTS-bio) rather than
being involved in recognition of visual action categories per se.

Our results also agree with work suggesting that IPL is in-
volved in abstract coding of actions. IPL has been implicated in
the representation of dynamic upper-limb actions (Cattaneo et
al., 2010; Bach et al., 2010; Abdollahi et al., 2013; Ferri et al., 2015)
and tool-related actions (Mahon et al., 2007; Peeters et al., 2009,
2013; Gallivan et al., 2011; Tarhan et al., 2015; for review, see
Orban and Caruana, 2014; Gallivan and Culham, 2015). Other
work suggests that IPL, particularly in the left hemisphere, may
represent the abstract causal outcomes or relationships between
entities. For example, Oosterhof et al. (2012b) found crossmodal
action-specific codes across execution and mental imagery in left
IPL, but not in premotor cortex or LOTC. Left IPL exhibits ad-
aptation when viewing reaching actions toward the same goal
object, even when the hand follows a very different spatial trajec-
tory (Hamilton and Grafton, 2006). Moreover, activation pat-
terns in left IPL have been found to distinguish between motor
acts (e.g., pushing, grasping), but generalize across acts performed
with different body parts (Jastorff et al., 2010). Recent work from
Leshinskaya and Caramazza (2015) suggests that a dorsal portion
of left IPL represents common outcomes associated with differ-
ent objects even when those outcomes are defined at a highly
abstract level (e.g., a wind chime for decorating a house and
perfume for decorating oneself). In our study, the spatial extent
of cross-decoding was greater in the left hemisphere than the
right (Fig. 2, Table 1). Together, previous work and the current
study suggest a role for IPL (particularly on the left) in represen-
tation of actions at an abstract level.

We also observed action decoding in premotor cortex. Like
LOTC and IPL, premotor cortex has been consistently implicated
in action observation (Buccino et al., 2004; Gazzola et al., 2007;
Saygin, 2007; Etzel et al., 2008; Majdandzic et al., 2009; Ogawa
and Inui, 2011; for a meta-analysis, see Caspers et al., 2010), a
finding that has been taken to support motor theories of action
understanding (e.g., Rizzolatti and Craighero, 2004; Rizzolatti
and Sinigaglia, 2010). In contrast, cognitive theories maintain
that action understanding is achieved via higher-level, amodal
representations (Hickok, 2009; Caramazza et al., 2014). Because
our study only examines action observation, not action execu-
tion, we cannot address the crossmodal (observe/execute) aspects
of this debate (Chong et al., 2008; Dinstein et al., 2008; Kilner et
al., 2009; Caspers et al., 2010; Oosterhof et al., 2010, 2012a; Tar-
han et al., 2015). Nevertheless, we did find that, along with LOTC
and IPL, representations of observed actions in premotor cortex
were invariant to incidental perceptual features and the dynam-
icity of visual input. Although this result might seem superficially
at odds with Wurm and Lingnau’s (2015) finding that represen-
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tations of open and close generalized across the acted-upon object
and the associated action kinematics in IPL and LOTC but not in
premotor cortex, we believe that our result is not necessarily in-
consistent. Whereas Wurm and Lingnau (2015) defined their
actions by object state changes (open vs close), we defined our
actions by the physical manner of interaction (e.g., kick vs mas-
sage). These components are logically dissociable (e.g., one can
kick a door open or closed). Therefore, AON regions may differ
in which components of actions they represent, with premotor
coding for the physical manner of action but not state change and
LOTC and IPL coding for both. In any case, our results support
the idea that there is abstraction across some features of percep-
tual input in all AON regions, including premotor cortex.

An open question is how the AON can extract common action
codes from both static and dynamic displays. Given that in nat-
uralistic action observation, all body parts of actors are generally
visible, simple presence/absence of specific effectors in the visual
field cannot be sufficient for recognition. Instead, we hypothesize
that the spatial configuration of entities (actor/effector and
acted-upon entity) is crucial for determining the action category
and that parts of the AON process this configural information.
Such information would be observable in both images and vid-
eos. Supporting this view, there is behavioral and neuroimaging
evidence that the visual system codes the elements of actions as a
perceptual unit, possibly including information about their spa-
tial configuration, rather than simply coding them as separate,
distinct items. First, briefly observed snapshots of actions are
sufficient for recognition, but only when the configuration of
scene entities is consistent with the given action (Dobel et al.,
2007; Hafri et al., 2013). Second, multivoxel patterns in LOTC
elicited by images of interacting humans and objects are not lin-
early decodable from the patterns elicited by the same actors and
objects shown in isolation, yet such linear decoding is successful if
the actor and objects are superimposed in a noninteracting man-
ner (Baldassano et al., 2016). This suggests that neural represen-
tations of human– object interactions (at least in LOTC) may
incorporate configuration information that makes them more
than the sum of their visual parts.

Another possible explanation for common static/dynamic ac-
tion codes, not mutually exclusive to the above, is that, through
experience, static snapshots of actions become associated with
full action sequences and thus elicit those sequences (Giese and
Poggio, 2003; Jastorff et al., 2009; Singer and Sheinberg, 2010;
Vangeneugden et al., 2011). This association may account for the
implicit/implied motion effects observed in both behavioral and
neuroimaging studies (Freyd, 1983; Shiffrar and Freyd, 1993;
Kourtzi and Kanwisher, 2000; Senior et al., 2000; Winawer et al.,
2008, 2010; Gervais et al., 2010) and may be what allows the
action recognition system to be robust to missing or ambiguous
perceptual input. Supporting this idea, behavioral work has
shown that causal representations are engaged for both simple
and naturalistic launching events despite temporary occlusion or
absence of the causal moment from the stimulus display (Strick-
land and Keil, 2011; Bae and Flombaum, 2011).

To summarize, we uncovered abstract neural codes for action
categories in bilateral OTC and IPL, left premotor cortex, and left
mFG, including regions of LOTC that have been previously im-
plicated in body, object, and motion processing. These codes
were invariant to differences in actors, objects, scene context, or
viewpoint and could be evoked by both dynamic and static stim-
uli. Moreover, most of these regions showed consistent represen-
tational spaces across subjects and formats, which is a feature of
an action recognition system that can facilitate a common under-

standing of actions across individuals. Together, our findings
suggest that these regions mediate abstract representations of ac-
tions that may provide a link between visual systems that support
perceptual recognition of actions and conceptual systems that
support flexible, complex thought about physically interacting
entities.
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